3D printed microfluidic circuitry via multijet-based additive manufacturing.
نویسندگان
چکیده
The miniaturization of integrated fluidic processors affords extensive benefits for chemical and biological fields, yet traditional, monolithic methods of microfabrication present numerous obstacles for the scaling of fluidic operators. Recently, researchers have investigated the use of additive manufacturing or "three-dimensional (3D) printing" technologies - predominantly stereolithography - as a promising alternative for the construction of submillimeter-scale fluidic components. One challenge, however, is that current stereolithography methods lack the ability to simultaneously print sacrificial support materials, which limits the geometric versatility of such approaches. In this work, we investigate the use of multijet modelling (alternatively, polyjet printing) - a layer-by-layer, multi-material inkjetting process - for 3D printing geometrically complex, yet functionally advantageous fluidic components comprised of both static and dynamic physical elements. We examine a fundamental class of 3D printed microfluidic operators, including fluidic capacitors, fluidic diodes, and fluidic transistors. In addition, we evaluate the potential to advance on-chip automation of integrated fluidic systems via geometric modification of component parameters. Theoretical and experimental results for 3D fluidic capacitors demonstrated that transitioning from planar to non-planar diaphragm architectures improved component performance. Flow rectification experiments for 3D printed fluidic diodes revealed a diodicity of 80.6 ± 1.8. Geometry-based gain enhancement for 3D printed fluidic transistors yielded pressure gain of 3.01 ± 0.78. Consistent with additional additive manufacturing methodologies, the use of digitally-transferrable 3D models of fluidic components combined with commercially-available 3D printers could extend the fluidic routing capabilities presented here to researchers in fields beyond the core engineering community.
منابع مشابه
Low-cost Flexible All-inkjet-printed Microfluidic Sensor
This paper demonstrates a novel and low-cost additive manufacturing process for flexible and disposable microfluidics on virtually any substrate, with which the first “all-inkjet-printed” microfluidic microwave sensor is prototyped. A 30-μm-high 600-μm-wide SU-8 (polymer) 3-D microfluidic channel and an electromagnetic sensing setting are fabricated with sole reliance on multilayer inkjet-print...
متن کاملIn-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials
Microfluidic chips provide unparalleled control over droplets and jets, which have advanced all natural sciences. However, microfluidic applications could be vastly expanded by increasing the per-channel throughput and directly exploiting the output of chips for rapid additive manufacturing. We unlock these features with in-air microfluidics, a new chip-free platform to manipulate microscale li...
متن کاملHybrid 3D Printing of Soft Electronics.
Hybrid 3D printing is a new method for producing soft electronics that combines direct ink writing of conductive and dielectric elastomeric materials with automated pick-and-place of surface mount electronic components within an integrated additive manufacturing platform. Using this approach, insulating matrix and conductive electrode inks are directly printed in specific layouts. Passive and a...
متن کاملFatigue Characterization of 3d Printed Elastomer Material
The Objet PolyJet 3D Printing process provides the ability to print graded materials featuring both stiff and elastomeric polymers. This capability allows for a variety of new design possibilities for additive manufacturing such as living hinges, shock absorbing casings, and integrated gaskets. Such design features typically rely upon the ability of traditional elastomers to experience large an...
متن کاملWelding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating
Additive manufacturing through material extrusion, often termed three-dimensional (3D) printing, is a burgeoning method for manufacturing thermoplastic components. However, a key obstacle facing 3D-printed plastic parts in engineering applications is the weak weld between successive filament traces, which often leads to delamination and mechanical failure. This is the chief obstacle to the use ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 16 4 شماره
صفحات -
تاریخ انتشار 2016